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Abstract. We presentthe designand implementationof an infrastructurethat
enablesmonitoring of resourcesservices,and applicationsin a computational
grid and providesa toolkit to help managetheseentitieswhenfaultsoccur This
infrastructurebuilds on three basic monitoring componentssensorgo perform
measurementsictuatordo performactions,andan eventserviceto communicate
eventsbetweerremoteprocessesdiVe describehow we apply our infrastructureto
support a grid service and an application: (1) the Globus Metacomputing
Directory Service;and (2) a long-runningand coarse-grainegharameterstudy
application We usetheseapplicationto shav thatour monitoringinfrastructurdas
highly modulay corveniently retagettable, and>@ensible.

1 Intr oduction

A typical computationalgrid is characterizedy distributed resources, services, and

applications. Computationalgrids consistof large sets of diverse, geographically
distributed resourceghat are groupedinto virtual computersfor executing specific
applications.The diversity of theseresourceand their large numberof usersrender
them vulnerableto faults and excessie loads. Suitable mechanismsare neededto

monitor resourceusagefor detecting conditions that may lead to failures. Grid

resourcesare typically controlled by multiple, physically separatedentities that
constitute value-addedservices. Grid servicesare often expectedto meet some
minimum levels of quality of service (QoS) for desirableoperation. Appropriate
mechanismareneededor monitoringandregulating systemresourceusageto meet
QoSrequirementsThe compleity of grid applicationswhich arebuilt on distributed
resourcesandservicesstemsfrom their typically large sizeandinherentlydistributed
structure. This compleity contritutes to a possibility of encounteringfailures.
Therefore,grid applicationsalso require mechanismgo detectand recover from

failures.

The National Aeronautics and Space Administration (NASA) is building a
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computationalgrid, called the Information Paver Grid (IPG). Currently the IPG
consistsof resourcesat NASA's Ames, Glenn,andLangley researctcentersandwill

grow to containresourcedsrom mary NASA centers.As part of this effort, we are
developinganinfrastructureo monitorresourcesservicesandapplicationghatmake
up the IPG andto detectexcessie resourcausagepatternsfaults,or deviationsfrom
requiredQoS levels. This grid monitoring infrastructureis also capableof invoking
recorery mechanismgor possiblefault managemendr QoSregulation.In this paper
we presenthe designof this infrastructureand describeits implementatiorfor fault
detection and management of a grid service and an IPG application.

We require a framework for monitoring and fault managementhat is scalable,
extensible modular secureandeasyto use.Our infrastructuremustscaleto the large
numberof entitiesto be monitoredandmanagedn the IPG. Our framevork mustalso
be extensiblebecauseentitiesto be monitored,failure modes,and methodsfor fault
recovery or QoSregulationarelikely to changeovertime. As ameango severalends,
we requirethatour grid monitoringinfrastructurds modularto allow new components
to be addedand existing component$o be modifiedwithout changingthe restof the
code.Modularity helpslower the software compleity by allowing a userto include
only thosecomponentshatthey wishto use.We alsorequiresupportfor severallevels
of securitybuilt atopthe basicIPG securityinfrastructure:none,authenticatiorand
authorizationandfinally authenticationauthorizationandencrypteccommunication.

We examineda numberof existing monitoring systemsand found that they did not
fulfill the above requirementsA majority of existing monitoring systemssuch as
NetLogger[15], Paradyn[12], AIMS [17], Gloperf[10], and SPI[1] cancollectdata
from distributed systemsfor analyzingthem throughtheir specific tools. However,
thesemonitoring systemscannotsene as datacollectioncomponentdgor othertools
and applicationsthat may wish to use this information. Some of the existing
monitoring systemsdo support external tools or applicationsfor fault detection,
resourcescheduling,and QoS managementThe Heart Beat Monitor (HBM) is an
extensionof Globusthatperiodicallysends’heartbeats’to a centralizedcollectorand
provides a fault detectionservicein a distributed system[14]. While heartbeatare
often usedfor periodically determiningthe statusof a remotenode,relying only on
one type of “sensor” (i.e., heartbeatgeneratedby local monitors) contritutes to
inaccuraciesin fault detection. The Network Weather Service (NWS) measures
availablenetwork bandwidthandsystemoadto predicttheir future statesFuturestate
predictionscan be usedby a schedulerto resere and allocatetheseresourcesn an
efficient manner{16]. If we considera stateestimatorasa specialtype of sensorwe
could useits future statepredictionsfor the benefitof several real-timeapplications
thatoftenrely on dynamicschedulingof resourcesDindaet al. compareandevaluate
several time-seriesnodelingtechniquedo predictfuture systemloads,which canbe
appliedto dynamicresourcemanagemenis]. The Dynamic Soft Real-Time (DSRT)
schedulingtool relies on a customizedCPU monitor to implementvarious specific
scheduling policies of this tool [4]. JEWEL/DIRECT is an example where a
monitoring systemcanbe usedasa part of a feedbackoop in control systemq7,9].
However, the complity of this monitoring systemmakes it a challengeto use.
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RMON monitorsthe resourceusagefor distributed multimediasystemsrunning RT-
Mach [11]. Information collectedby the monitoring systemis specifically usedfor
adaptvely managingthe systemresourceshroughreal-timefeaturesof the operating
system. Autopilot integrates dynamic performanceinstrumentationand on-the-fly
performancedata reduction with configurableresourcemanagementand adaptve
control algorithms[13]. However, in this casedatacollection is specifically geared
toward providing adaptve control andit is not obvious if underlyingdatagathering
services can be used for other applications. Java Agents for Monitoring and
Managemen{JAMM [3]) is anothereffort in the samedirection,which addressethe
needsof only Java basedapplicationsSNMP basedoolsarewidely usedfor network
monitoringandmanagementSimilarly, monitoring,fault notification,andweb-based
systemand network administrationtools, suchasBig Brother[2] are also useful for
distributed systems.However, thesetools cannotprovide application-specificavent
notification, which is supported in our monitoring and management infrastructure.

Ourinfrastructurds built on threebasicmodules:sensors, actuators, anda grid event
service. Sensorsare usedto measurepropertiesfrom a local system.Sincethereare
mary propertiesthat could be measured,our monitoring infrastructuredefinesa
commonapplicationprogramminginterface (API) for sensorsin this way, we can
implementsomesetof sensorgor measuringhasicpropertiesandotheruserscanadd
sensorgor otherpropertieghatthey wish to monitor Actuatorsperformactionsfrom
a local system.Similar to sensorsthereare mary differentactuatorghatall sharea
commonAPI. Thegrid eventserviceprovidescommunicatiorof monitoringandfault
managemengventsfrom producerdo consumersAtop thesebasicmodules higher
level modulescan be constructed.For example, we describea sensor manager
componentthat facilitates the building of customizedmonitoring systems.Our
monitoringinfrastructureis describedn Section2. Section3 describesa serviceand
an applicationthat we are supportingwith our infrastructure.We concludewith a
discussion of future directions of thidat in Section 4.

2 Monitoring Infrastructur e

Our grid monitoring infrastructure includes three basic components: sensors,
actuatorsandaneventservice Figurel depictsa typical monitoringscenaridouilt on

thesebasiccomponentsThesecomponentaretypically locatedon multiple hoststhat

interactwith one anotherthroughthe event serviceas shavn in the figure. Further
description of three basic components feko

Sensors:A sensorcan measurethe characteristicof a target systemresource A
sensottypically executesoneof Unix utilities, suchasdf, ps, ping, vmstat, or netstat,
and extracts sensorspecific measurementsT hesemeasurementare represented@s
values of sensoispecific attributes. In addition to theseexternal sensors, we also
provide internal sensors that can collect resourceusageinformationfrom within the
calling process.

Actuators: An actuatoris invokedin a similar fashionto a sensorexceptthatit uses
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Fig. 1. A prototypeimplementatiorof a monitoringsystemusingthreebasiccomponents
of grid monitoring infrastructure: sensors, actuators, and gedteservice.

theshellto performspecificconfigurationprocessontrol,or otheruserdefinedtasks.
Some of the actuatorsthat we are implementinginclude: kill process,send mail,
execute a shell command, lightweight directory access protocol (LDAP) sener
queries, and some Glov commands.

Event Sewice: This facility provides a mechanisnfor forwarding sensorcollected
informationto other processeshat are interestedin that information. Event service
supportsa publishersubscribemparadigmfor a client to requestspecificinformation
anda sener to forward that information. Event servicealsofacilitatesforwarding of
application-specificvent data from a user process to a consumer process.

Thesebasic monitoring servicescan be invoked through APIs. Common APIs to
sensorsand actuatorsallow us to implement new sensorsor actuatorswithout
changingthe codethatusesthem.We alsoimplementthe APIs asstand-alonaeitilities
so that they can be invoked on the command-line.We have implementedthese
component®on threeplatforms:Irix, Solaris,andLinux. We representhe monitored
data using eXtensible Markup Language (XML).

A number of higher level componentscan be built using the basic monitoring
componentsWe have implementeda local sensor manager that can executeuser
specifiedsensorsand forward event data. We have also developeda genericdata
collector componentfor gatheringthe information forwarded by local monitoring
seners.We arein the procesof developingdata archives andquery serversto extend
monitoring and managemeninfrastructureto supporttools and applicationsthat do
not usepublishersubscribeparadigm.Figure 2 presentsan overviewn of the software
architectureof monitoring and fault managemeninfrastructure.Prototypesfor the
threebasiccomponentsare built on Globus middlewvare servicesfor communication
and security Higher level componentsare basedon the three basic components.
Distributed applicationsmanagementools, and monitoringtools caneitherusehigh
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level componentsor directly accessbasic componentsfor a greater degree of
customizability

Monitoring, fault management, and
QoS regulation applications

Higher level monitoring and management components
(sensor managers, data collectors, etc.)

Monitoring and management infrastructure
(sensors, actuators, event service)

Globus middleware services

Operating system services

Fig. 2. Software architecture of monitoring and management infrastructure for
computational grids.

3 Applications of the Infrastructur e

We are currently applying our infrastructureto one grid service and one grid
applicationto provide fault handlingand applicationstatustracking. The following
subsections present ameovien of these uses of our infrastructure.

3.1 Fault Management br Metacomputing Directory Sewice

The metacomputing directory service (MDS) is the LDAP-basedgrid information
serviceof the Glohus toolkit [6]. In a Globus basedcomputationalgrid, the MDS
maintains dynamic information about resources services,and applications.Many
servicesand applicationsutilize this information and it is thus critical that this
informationbe available.An MDS sener may becomenaccessibldéor queriesdueto
several reasonsincluding: (1) large log files resultingin high disk usageand 1/0
failures;(2) excessve CPUload;(3) excessve numberof clientstrying to queryMDS;
(4) network failures;and (4) LDAP sener failures.In order to provide a reliable
directory servicein a productiongrid ernvironment, we needto detect,report, and
manage these MD&dlts.

Figure 3 describesthe architectureof an MDS fault managerbasedon our grid
monitoring and managementomponentsEachhostrunning a LDAP sener for the
MDS containsa monitor and a fault manager The monitor periodically invokes
sensorsto collect information on disk usage,CPU usage,number of actve TCP
connectionsto the MDS host, and the statusof the LDAP sener process.This
information is receved by the local fault managerwhich checksthis information
againstpredefinedault conditions.If a fault conditionoccurs,the fault manageuses
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actuatorgo take the specifiedactions.For example,if the LDAP log files exceedtheir
allocateddisk spaceplder log files are moved to tapeor if the LDAP sener process
disappearsghe LDAP sener is restartedThefault manageis a separat@rocesfrom
the monitorfor securityreasonsthe fault managerequiresroot privilegesto startthe
LDAP sener and thereforethe fault managershould be as simple as possiblefor
verification.

MDS fault manager host

| Sensor | Actuators |

MDS monitor/fault manager

Event service (ES)

MDS host /’MDS based on MDS hased on MDS host
an LDAP server an LDAP server

Local monitor Local Fault manager Local monitor Local Fault manager
=) ES

Fig. 3. Architecture of an MDSdult manager using grid monitoring infrastructure.

Much of the monitoringandfault managemerin this exampletakesplaceonthelocal
machine put a remotemonitorandfault manageis usedto monitorthe hoststhatare
running the LDAP seners. The local monitor on the LDAP sener hostis sending
periodicheartbeatnessageto the MDS fault manageion a remotehost.If the MDS
fault managerstopsreceving heartbeat§rom a local monitor, it will seeif the host
runningthe local monitor canbe contactedIf the hostis not accessibleanddoesnot
become accessiblewithin a specified period, an email is sent to the MDS
administrators so that thean correct this problem.

Figure4 depictsthe temporalanalysisof tracedataobtainedfrom afour daylong test
of MDS fault managerClearly, theinter-arrival timesof amajority of heartbeasensor
messageat the MDS fault managemarecloseto their actualsamplingperiodof 10 sec
with only afew exceptionsthatexceedtimeoutvalueof 12 sec.Usingthis consisteng
in inter-arrival times,someof the existing fault managemenrfacilitiesrely on periodic
heartbeat&induse“unusual” delayin the arrival of thesemessageto establishfault
occurrence14]. For this test, using a heartbeatasedapproachalone would have
erroneoushydetecteahis late arrival asa failure. The MDS fault manageusesa ping
sensorto confirm if the MDS hostis actually unreachableand distinguisha failure
from late-arrving heartbeatin the caseshown in Figure 4(a), it was simply a late-
arriving heartbeatFigure4(b) shavs thatthe availabledisk spaceremainedbelow the
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minimum value of 100 MBytes during this experiment;so no faultsoccurred.Figure
4(c) shaws that mostof the time, the numberof TCP connectiongemainecbelov an
arbitrarily selected limit of 40.

Timeout = 12 sec

Inter-arrival time (sec)

Free disk space (KB)

Time (sec)

(a) “heartbeats”

Number of TCP connections

Time (sec)
(b) Free disk space

Maximum connections = 40

Time (sec)

(c) TCP connections

35
x10°

Fig. 4. Temporal analysis of three types of sensor messages sent to the centrau\iC
manageduringafour daylongtest.A sensotime periodof 10 secis used.(a) A majority
of theheartbeaimessagearerecevedby thefault managewithin a 12 secallowableinter-

arrival time. (b) Free disk space remains\abthe 100 MB limit. (c) Number of TCP
connectionsceeded the limit for a small intexivof time.

3.2 Monitoring and Fault Management of a Rirameter Study Application

Parameteistudiesareoften consideredsuitableapplicationgor distributedcomputing
platformsdueto their coarse-grairparallelism.For this parametestudy application,
sensorsmonitor processesstate, free disk space,file staging, host status, and
applicationexecution progress Monitoring is neededto detectfaults relatedto host
accessibility disk space availability, and application process status during an
execution.In this subsectionwe describehow to useour infrastructureto perform
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monitoring and dult management for a parameter study application.

Figure 5 depictsthe architectureof a monitoring and fault notification systemfor a

parametestudy application.The front end of the parametestudy application,called

ILab, distributes the individual processeson multiple parallel systemsin a

computationalgrid. A shell script on the front-end host of each parallel system
determinesthe processIDs for relevant processesand uses a command-line
implementationof process status sensorwhich periodically sendsthe processstate
informationfrom front-endhostto the ILab host. A disk space sensoiis alsoinvoked

to monitorthe disk usage This processanddisk usagenformationis usedby thelLab

front-endto determineif a processhasterminatedor excessie disk spacehasbeen
used.In caseof procesdermination |Lab usesa separatecriptto examinetheprocess
outputfile to determineif it was terminatednormally or abnormally In caseof an

abnormaltermination,ILab cantry to further analyzethe causeof this conditionand

may alter the future courseof job submissionsSimilarly, if the disk usageon a

particularfile systemexceedsa specifiedvalue, subsequentlyaunchedprocessesre

configuredto write their outputto a differentfile system.Thususingmonitoringand

fault detectionthroughgrid monitoring componentsselectedault conditionscanbe

automatically managed.

Parameter study host
ILab GUI
Event service (ES)
4 r
[\
Front-end host of Front-end host of
a parallel system a cluster of workstations

shell script
activated by a cron job

shell script
activated by a cron job

Fig. 5. Architecture of a monitoring anddilt reporting &cility for a parameter
study application.

We tracked the disk spaceusageand statusof a particularapplicationprocessduring
one experimentwith the parametestudy application.Figure 6 presentlots of this
information over the application execution time. Using this information, the ILab
front-enddetectghe conditionwhena particularprocesgerminatesandit canproceed
with its test to decided whether or not it terminated normally
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Fig. 6. Disk usage and process status information collected duringé¢kat®n of a
parameter study application. (a) Interival times of heartbeat messages. (b) Free d
space. (c) Status of one of the application processeslu& of 1 indicates that the

process is running and 0 indicates that it has terminated.

In addition to monitoring systemlevel resourceusage,our monitoring and fault
managementinfrastructure can dynamically monitor application-specificevents
occurringin distributed processesThis is accomplishedhroughinternalsensorsand
the event service API. Distributed application processesare instrumented by
embeddinginternal sensorsin the code to publish desiredinformation, which is
collectedby a client. Client processsubscribego the publisherto asynchronously
receve the desiredeventdata.This is essentiallya traditionalapplicationmonitoring
scenariowhich is implementedusing a publishersubscribemparadigm.This type of
information can be usedfor performancemonitoring or to allow client to steerthe
application.
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4 Discussion

In this extended abstract,we outlined a grid monitoring and fault management
infrastructure to provide modulay retagettable, and extensible data collection
componentsto enable higher level fault handling and managemenservicesin a
computationalgrid. In addition to performing the traditional task of a monitoring
systemto gathersystem-and application-specifiénformation, this infrastructurecan
be emplosed in high level data consumersthat use monitored information for
accomplishingault managementlecisionmaking, or applicationsteeringtasks.We
presentedwo applicationsof this monitoringinfrastructureto provide suchservices
for specific distrilnted applications.

Currently our infrastructure uses a publishersubscriber paradigm for event

notification.We planto enhancet to otherdataforwardingmodels,suchasquerying
archives of monitored information. We will also use rule-basedfault detection
mechanismshat are basedon predictionof future systemstatesthroughappropriate
time-seriesmodels. Fault detection and managementmechanismsare basedon

characterizatiorand understandingf conditionsthat leadto failures.We are using

applicationandsystemlevel monitoringto characterizéault occurrencesndto glean
better understanding of conditions that leadcatdts.
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